Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(4): e15938, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383049

RESUMEN

With the technological advances made to expand space exploration, astronauts will spend extended amounts of time in space before returning to Earth. This situation of unloading and reloading influences human physiology, and readaptation to full weight-bearing may significantly impact astronauts' health. On Earth, similar situations can be observed in patients who are bedridden or suffer from sport-related injuries. However, our knowledge of male physiology far exceeds our knowledge of female's, which creates an important gap that needs to be addressed to understand the sex-based differences regarding musculoskeletal adaptation to unloading and reloading, necessary to preserve health of both sexes. Using a ground-based model of total unloading for 14 days and reloading at full weight-bearing for 7 days rats, we aimed to compare the musculoskeletal adaptations between males and females. Our results reveal the existence of significant differences. Indeed, males experienced bone loss both during the unloading and the reloading period while females did not. During simulated microgravity, males and females showed comparable muscle deconditioning with a significant decline in rear paw grip strength. However, after 7 days of recovery, muscle strength improved. Additionally, sex-based differences in myofiber size existing at baseline are significantly reduced or eliminated following unloading and recovery.


Asunto(s)
Vuelo Espacial , Ingravidez , Ratas , Humanos , Masculino , Femenino , Animales , Suspensión Trasera/fisiología , Músculos , Ingravidez/efectos adversos , Soporte de Peso/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular
2.
J Appl Physiol (1985) ; 134(6): 1438-1449, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102698

RESUMEN

Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Humanos , Ratas , Masculino , Femenino , Animales , Ovariectomía , Testosterona/fisiología , Estradiol , Músculo Esquelético , Orquiectomía , Hormonas Gonadales , Ratas Endogámicas F344 , Pérdida de Peso
3.
Sports Med Health Sci ; 5(4): 319-328, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38314043

RESUMEN

Skeletal muscle size and strength are important for overall health for astronauts. However, how male and female muscle may respond differently to micro- and partial-gravity environments is not fully understood. The purpose of this study was to determine how biological sex and sex steroid hormones influence the progression of muscle atrophy after long term exposure to micro and partial gravity environments in male and female rats. Male and female Fisher rats (n â€‹= â€‹120) underwent either castration/ovariectomy or sham surgeries. After two weeks recovery, animals were divided into microgravity (0g), partial-gravity (40% of weight bearing, 0.4g), or full weight bearing (1g) interventions for 28 days. Measurements of muscle size and strength were evaluated prior to and after interventions. At 0g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle size compared to males; castration/ovariectomy did not influence these differences. Additionally, at 0.4g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle strength compared to males; castration/ovariectomy did not influence these differences. Females have greater musculoskeletal aberrations during exposure to both microgravity and partial-gravity environments; these differences are not dependent on the presence of sex steroid hormones. Correspondingly, additional interventions may be necessary to mitigate musculoskeletal loss in female astronauts to protect occupational and overall health.

4.
J Vis Exp ; (184)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35758704

RESUMEN

Electrical impedance myography (EIM) is a convenient technique that can be used in preclinical and clinical studies to assess muscle tissue health and disease. EIM is obtained by applying a low-intensity, directionally focused, electrical current to a muscle of interest across a range of frequencies (i.e., from 1 kHz to 10 MHz) and recording the resulting voltages. From these, several standard impedance components, including the reactance, resistance, and phase, are obtained. When performing ex vivo measurements on excised muscle, the inherent passive electrical properties of the tissue, namely the conductivity and relative permittivity, can also be calculated. EIM has been used extensively in animals and humans to diagnose and track muscle alterations in a variety of diseases, in relation to simple disuse atrophy, or as a measure of therapeutic intervention. Clinically, EIM offers the potential to track disease progression over time and to assess the impact of therapeutic interventions, thus offering the opportunity to shorten the clinical trial duration and reduce sample size requirements. Because it can be performed noninvasively or minimally invasively in living animal models as well as humans, EIM offers the potential to serve as a novel translational tool enabling both preclinical and clinical development. This article provides step-by-step instructions on how to perform in vivo and ex vivo EIM measurements in mice and rats, including approaches to adapt the techniques to specific conditions, such as for use in pups or obese animals.


Asunto(s)
Músculo Esquelético , Miografía , Animales , Progresión de la Enfermedad , Impedancia Eléctrica , Ratones , Músculo Esquelético/fisiología , Miografía/métodos , Ratas , Roedores
5.
Physiol Rep ; 9(19): e15042, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34612585

RESUMEN

Ground-based animal models have been used extensively to understand the effects of microgravity on various physiological systems. Among them, hindlimb suspension (HLS), developed in 1979 in rats, remains the gold-standard and allows researchers to study the consequences of total unloading of the hind limbs while inducing a cephalic fluid shift. While this model has already brought valuable insights to space biology, few studies have directly compared functional decrements in the muscles of males and females during HLS. We exposed 28 adult Wistar rats (14 males and 14 females) to 14 days of HLS or normal loading (NL) to better assess how sex impacts disuse-induced muscle deconditioning. Females better maintained muscle function during HLS than males, as shown by a more moderate reduction in grip strength at 7 days (males: -37.5 ± 3.1%, females: -22.4 ± 6.5%, compared to baseline), that remains stable during the second week of unloading (males: -53.3 ± 5.7%, females: -22.4 ± 5.5%, compared to day 0) while the males exhibit a steady decrease over time (effect of sex × loading p = 0.0002, effect of sex × time × loading p = 0.0099). This was further supported by analyzing the force production in response to a tetanic stimulus. Further functional analyses using force production were also shown to correspond to sex differences in relative loss of muscle mass and CSA. Moreover, our functional data were supported by histomorphometric analyzes, and we highlighted differences in relative muscle loss and CSA. Specifically, female rats seem to experience a lesser muscle deconditioning during disuse than males thus emphasizing the need for more studies that will assess male and female animals concomitantly to develop tailored, effective countermeasures for all astronauts.


Asunto(s)
Fuerza de la Mano/fisiología , Suspensión Trasera , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Caracteres Sexuales , Animales , Femenino , Masculino , Ratas , Ratas Wistar
6.
Exp Physiol ; 106(12): 2472-2488, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569104

RESUMEN

NEW FINDINGS: What is the central question of this study? Is the oestrous cycle affected during disuse atrophies and, if so, how are oestrous cycle changes related to musculoskeletal outcomes? What is the main finding and its importance? Rodent oestrous cycles were altered during disuse atrophy, which was correlated with musculoskeletal outcomes. However, the oestrous cycle did not appear to be changed by Lewis lung carcinoma, which resulted in no differences in muscle size in comparison to healthy control animals. These findings suggest a relationship between the oestrous cycle and muscle size during atrophic pathologies. ABSTRACT: Recent efforts have focused on improving our understanding of female muscle physiology during exposure to muscle atrophic stimuli. A key feature of female rodent physiology is the oestrous cycle. However, it is not known how such stimuli interact with the oestrous cycle to influence muscle health. In this study, we investigated the impact of muscle atrophic stimuli on the oestrous cycle and how these alterations are correlated with musculoskeletal outcomes. A series of experiments were performed in female rodents, including hindlimb unloading (HU), HU followed by 24 h of reloading, HU combined with dexamethasone treatment, and Lewis lung carcinoma. The oestrous cycle phase was assessed throughout each intervention and correlated with musculoskeletal outcomes. Seven or 14 days of HU increased the duration in dioestrus or metoestrus (D/M; low hormones) and was negatively correlated with gastrocnemius mass. Time spent in D/M was also negatively correlated with changes in grip strength and bone density after HU, and with muscle recovery 24 h after the cessation of HU. The addition of dexamethasone strengthened these relationships between time in D/M and reduced musculoskeletal outcomes. However, in animals with Lewis lung carcinoma, oestrous cyclicity did not differ from that of control animals, and time spent in D/M was not correlated with either gastrocnemius mass or tumour burden. In vitro experiments suggested that enhanced protein synthesis induced by estrogen might protect against muscle atrophy. In conclusion, muscle atrophic insults are correlated with changes in the oestrous cycle, which are associated with deterioration in musculoskeletal outcomes. The magnitude of oestrous cycle alterations depends on the atrophic stimuli.


Asunto(s)
Trastornos Musculares Atróficos , Roedores , Animales , Femenino , Suspensión Trasera/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular/patología , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología
7.
Front Physiol ; 11: 557796, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041858

RESUMEN

As astronauts prepare to undertake new extra-terrestrial missions, innovative diagnostic tools are needed to better assess muscle deconditioning during periods of weightlessness and partial gravity. Electrical impedance myography (EIM) has been used to detect muscle deconditioning in rodents exposed to microgravity during spaceflight or using the standard ground-based model of hindlimb unloading via tail suspension (HU). Here, we used EIM to assess muscle changes in animals exposed to two new models: hindlimb suspension using a pelvic harness (HLS) and a partial weight-bearing (PWB) model that mimics partial gravity (including Lunar and Martian gravities). We also used a simple needle array electrode in lieu of surface or ex vivo EIM approaches previously employed. Our HLS results confirmed earlier findings obtained after spaceflight and tail suspension. Indeed, one EIM measure (i.e., phase-slope) that was previously reported as highly sensitive, was significantly decreased after HLS (day 0: 14.60 ± 0.97, day 7: 11.03 ± 0.81, and day 14: 10.13 ± 0.55 | Deg/MHz|, p < 0.0001), and was associated with a significant decrease in muscle grip force. Although EIM parameters such as 50 kHz phase, reactance, and resistance remained variable over 14 days in PWB animals, we identified major PWB-dependent effects at 7 days. Moreover, the data at both 7 and 14 days correlated to previously observed changes in rear paw grip force using the same PWB model. In conclusion, our data suggest that EIM has the potential to serve as biomarker of muscle deconditioning during exposure to both micro- and partial- gravity during future human space exploration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...